
log: d:\ssizeprglog.log log type: text opened on: 15 Feb 2007, 13:00:12

. clear

. quietly do ssizeprg

. ssizeprgdoc

* SSIZEPRG contains 4 `immediate form' programs that estimate * 2-sample sample sizes and power to detect NMB differences * that are greater than 0. Two programs -- cessli and cepowli --

* assume standard deviations for cost and effect that are common

* between the 2 treatment groups (SD, not SE for the difference).

* Two programs -- cess2i and cepow2i -- assume standard

* deviations for cost and effect that differ between the two

 \ast treatment groups. All 4 programs presume two arm trials and a

```
* common sample size for both treatment groups
```

* These programs yield results that are identical to those * derived from the NHB formula in: Willan AR. Analysis, sample * size, and power for estimating incremental net health benefit

- * from clinical trial data. Control Clin Trials 2001;22:228-237.
- * Glick, sampsizedoc last revised 02/13/07

* PROGRAM: CESS1I

- * cessli is used to estimate sample size when one assumes
- * there are common standard deviations for cost and effect
- * between the 2 treatment groups (SDs, not SEs for the difference
- * in cost and effect).

* COMMAND LINE: cessli [diffc] [diffe] [sdc] [sde] [corr] [wtp] [alpha] [beta]

* The 8 arguments are all numbers ** `1' Difference in costs ** `2' Difference in effects ** `3' Standard deviation, costs (assumed the same for both groups) ** `4' Standard deviation, effects (assumed the same for both groups) ** `5' Correlation, difference in costs and effects ** `6' Maximum willingness to pay ** `7' Two-tailed alpha level (e.g., 0.05) ** `8' One-tailed beta level (e.g., 0.080) * Saved results (scalars) * r(diffc) * r(diffq) * r(sd_c) * r(sd_e) * r(mb) * r(beta) * r(mb) * r(sampsize)

* PROGRAM: CEPOW1i

- * cepowli is used to assess power when one assumes
- \ast that the 2 treatment groups have common standard
- * deviations for costs and effects (SDs, not SEs for
- * the difference in cost and effect)

* COMMAND LINE: cepowli [diffc] [diffe] [sdc] [sde] [corr] [wtp] [alpha] [sampsize]

- * The 8 arguments are all numbers
- * `1' Difference in costs
- * `2' Difference in effects
- * `3' Standard deviation, costs (assumed the same for both groups)
- * `4' Standard deviation, effects (assumed the same for both groups)
- * `5' Correlation, difference in costs and effects
- * `6' Willingness to pay
- * `7' Two-tailed level (e.g., 0.05)
- * `8' Sample size per group

* Saved results (scalars)

- * r(diffc)
- * r(diffq)
- * r(sd_c)
- * r(sd_e)
- * r(rho)
- * r(wtp)
- * r(alpha)
- * r(sampsize)
- * r(nmb)
- * r(power)
- (1 ...)

* PROGRAM: CESS2I

- * cess2i is used to assess sample size when one
- * assumes there are Rx-specific standard deviations
- * for the 2 treatment groups' costs and effects (SDs,
- * not SEs for the difference in costs and effects)

* COMMAND LINE: cess2i [diffc] [diffe] [sdc0] 9sdc1 [sde0] [sde1] [corr] [wtp] [alpha] [beta]

* The 10 arguments are all numbers

- * `1' Difference in costs
- * `2' Difference in effects
- * `3' Standard deviation, costs, group 0
- * `4' Standard deviation, costs, group 1
- * `5' Standard deviation, effects, group 0
- * `6' Standard deviation, effects, group 1
- * `7' Correlation, difference in costs and effects
- * `8' Willingness to pay
- * `9' Two-tailed alpha level (e.g., 0.05)
- * `10' One-tailed beta level (e.g., 0.80)

* Saved results (scalars)

- * r(diffc)
- * r(diffq)
- * r(sd_c0)
- * r(sd_c1)
- * r(sd_e0)
- * r(sd_e1)
- * r(rho)
- * r(wtp)
- * r(alpha)
- * r(beta)
- * r(nmb)
- * r(sampsize)
- * PROGRAM: CEPOW2I
- * cepow2i is used to assess power when one assumes
- * there are Rx-specific standard deviations for the
- \star 2 treatment groups' costs and effects (SDs, not SEs
- * for the difference in costs and effects)

* COMMAND LINE: cepow2i [diffc] [diffe] [sdc0] 9sdc1 [sde0] [sde1] [corr] [wtp] [alpha] [sampl > e size]

- * The 10 arguments are all numbers
- * 1 Difference in costs
- * 2 Difference in effects
- * 3
- Standard deviation, costs, group 0 Standard deviation, costs, group 1 $\!\!\!$ * 4
- * 5 Standard deviation, effects, group 0 Standard deviation, effects, group 1
- * б
- * 7 Correlation, difference in costs and effects
- * 8 Willingness to pay
- * 9 Two-tailed alpha level (e.g., 0.05)
- * 10 Sample size

* Saved results (scalars)

* r(diffc)

- * r(diffq)
- * r(sd_c0)
- * r(sd_c1)
- * r(sd_e0)
- * r(sd_e1)
- * r(rho)
- * r(wtp)
- * r(alpha)
- * r(sampsize)
- * r(nmb)
- * r(power)

```
* EXAMPLE 1: ASSUME
* Cost difference = 1000
* Effect difference = 0.05
* SD cost = 1000
* SE effect = 0.5
* Correlation of the difference in C\&E = 0.1
* Willingness to pay = 75,000
* Two-tailed alpha = 0.05
```

```
* Two-tailed beta = 0.80
```

. cessli 1000 .05 1000 .5 .1 75000 .05 .8

SAMPLE SIZE CALCULATION (Common SD Costs and Effects)

Assumptions

Difference in costs:	1000
Difference in effects:	.05
Standard deviation, costs:	1000
Standard deviation, effects:	.5
Correlation, difference in costs and effects:	.1
Willingness to pay:	75000
Two-tailed alpha level:	.05
One-tailed beta level:	.8
Expected NMB:	2750
*** SAMPLE SIZE PER GROUP ***	2906

```
. return list
```

scalars:

r(diffc)	=	1000
r(diffq)	=	.05
r(sd_c)	=	1000
r(sd_e)	=	.5
r(rho)	=	.1
r(wtp)	=	75000
r(alpha)	=	.05
r(beta)	=	.8
r(nmb)	=	2750
r(sampsize)	=	2906

. cepowli 1000 .05 1000 .5 .1 75000 .05 2906

POWER CALCULATION (Common SD Costs and Effects)

```
Assumptions
```

Difference in costs:	1000
Difference in effects:	.05
Standard deviation, costs:	1000
Standard deviation, effects:	.5
Correlation, difference in costs and effects:	.1
Willingness to pay:	75000
Two-tailed alpha level:	.05
Sample size per group	2906
Expected NMB:	2750
*** POWER TO DETECT DIFFERENCE ***	.8

. return list scalars: r(diffc) = 1000r(diffq) = .05 $r(sd_c) = 1000$ $r(sd_e) = .5$ r(rho) = .1r(wtp) = 75000r(alpha) = .05r(sampsize) = 2906r(nmb) = 2750r(power) = .8* EXAMPLE 2: ASSUME * Cost difference = 1000 * Effect difference = 0.05 * SD0 cost = 900 * SD1 cost = 1000 * SE0 effect = 0.45 * SE1 effect = 0.55* Correlation of the difference in C&E = 0.1* Willingness to pay = 75,000 * Two-tailed alpha = 0.05 * Two-tailed beta = 0.80 . cess2i 1000 .05 900 1100 .45 .55 .1 75000 .05 .8 SAMPLE SIZE CALCULATION (Different SD, Costs and Effects) Assumptions Difference in costs: 1000 Difference in effects: .05 Standard deviation, costs, group 0: 900 Standard deviation, costs, group 1: Standard deviation, effects, group 0: 1100 .45 Standard deviation, effects, group 1: .55 Correlation, difference in costs and effects: .1 Ceiling ratio: 75000 Two-tailed alpha level: .05 One-tailed beta level: .8 Expected NMB: 2750 *** SAMPLE SIZE PER GROUP *** 2935 . return list scalars: r(diffc) = 1000r(diffq) = .05 r(sd_c0) = 900 $r(sd_c1) = 1100$

r(sd_e0) = .45 r(sd_e1) = .55

r(rho) = .1r(wtp) = 75000r(alpha) = .05r(beta) = .8r(nmb) = 2750r(sampsize) = 2935. cepow2i 1000 .05 900 1100 .45 .55 .1 75000 .05 2935 POWER CALCULATION (Different SD, Costs and Effects) Assumptions 1000 Difference in costs: Difference in effects: .05 Standard deviation, costs, group 0: 900 Standard deviation, costs, group 1: 1100 Standard deviation, effects, group 0: .45 Standard deviation, effects, group 1: .55 Correlation, difference in costs and effects: .1 Ceiling ratio: 75000 Two-tailed alpha level: .05 Sample Size: 2935 Expected NMB: 2750 *** POWER TO DETECT DIFFERENCE *** .8 . return list scalars: r(diffc) = 1000r(diffq) = .05 r(sd_c0) = 900 r(sd_c1) = 1100 r(sd_e0) = .45 r(sd_e1) = .55 r(rho) = .1 r(wtp) = 75000 r(alpha) = .05 r(sampsize) = 2935 r(nmb) = 2750 r(power) = .8. log close log: d:ssizeprglog.log log type: text closed on: 15 Feb 2007, 13:02:48 _____