Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

UK Research and Innovation, Cancer Research UK and industry are investing more than £11 million in an Oxford-led artificial intelligence (AI) research programme to improve the diagnosis of lung cancer and other thoracic diseases.

Professor Fergus Gleeson at the University of Oxford will lead on a programme of research focusing on accelerating pathways for the earlier diagnosis of lung cancer. Lung cancer is the biggest cause of cancer death in the UK and worldwide, with £307 million/year cost to the NHS in England. To address this clinical problem, NHS England is launching a £70 million lung cancer screening pilot programme at 10 sites*.

To improve patient care beyond the current screening guidelines, a team of academics from Oxford University, Nottingham University, and Imperial College London; NHS clinicians from Oxford University Hospitals NHS Trust, Nottingham University Hospitals NHS Trust, the Royal Marsden Hospital, the Royal Brompton Hospital, and University College London Hospitals NHS Foundation Trust; and the Roy Castle Lung Cancer Foundation will join forces with three leading industrial partners (Roche Diagnostics, GE Healthcare, Optellum).

Working with the NHS England Lung Health Check programme, clinical, imaging and molecular data will be combined for the first time using AI algorithms with the aim of more accurately and quickly diagnosing and characterising lung cancer with fewer invasive clinical procedures. Algorithms will also be developed to better evaluate risks from comorbidities such as chronic obstructive pulmonary disease (COPD). In addition, this programme will link to data from primary care to better assess risk in the general population to refine the right at-risk individuals to be selected for screening. It is hoped that this research will define a new set of standards for lung cancer screening to increase the number of lung cancers diagnosed at an earlier stage, when treatment is more likely to be successful.

Professor Sarah Wordsworth of the Health Economics Research Centre (HERC), is co-leading a workpackage on Primary care, Population Health and Health Economics modelling, along with Professor Julia Hippisley-Cox (Nuffield Department of Primary Care Health Services). This work will estimate the cost-effectiveness of the current approach to lung cancer screening versus the use of cancer risk assessment tools. It will assess whether optimising multiple risk prediction models within the Lung Cancer Screening Program in England, will provide value for money for the NHS by targeting interventions to those individuals who are most likely to benefit.