Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Patients with low estimated glomerular filtration rates may be at higher risk of post-contrast acute kidney injury following contrast-enhanced computed tomography imaging. Point-of-care devices allow rapid measurement of estimated glomerular filtration rates for patients referred without a recent estimated glomerular filtration rate result. OBJECTIVES: To assess the clinical effectiveness and cost-effectiveness of point-of-care creatinine tests for outpatients without a recent estimated glomerular filtration rate measurement who need contrast-enhanced computed tomography imaging. METHODS: Three systematic reviews of test accuracy, implementation and clinical outcomes, and economic analyses were carried out. Bibliographic databases were searched from inception to November 2018. Studies comparing the accuracy of point-of-care creatinine tests with laboratory reference tests to assess kidney function in adults in a non-emergency setting and studies reporting implementation and clinical outcomes were included. Risk of bias of diagnostic accuracy studies was assessed using a modified version of the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Probabilities of individuals having their estimated glomerular filtration rates correctly classified were estimated within a Bayesian framework and pooled using a fixed-effects model. A de novo probabilistic decision tree cohort model was developed to characterise the decision problem from an NHS and a Personal Social Services perspective. A range of alternative point-of-care testing approaches were considered. Scenario analyses were conducted. RESULTS: Fifty-four studies were included in the clinical reviews. Twelve studies reported diagnostic accuracy for estimated glomerular filtration rates; half were rated as being at low risk of bias, but there were applicability concerns for most. i-STAT (Abbott Point of Care, Inc., Princeton, NJ, USA) and ABL (Radiometer Ltd, Crawley, UK) devices had higher probabilities of correctly classifying individuals in the same estimated glomerular filtration rate categories as the reference laboratory test than StatSensor® devices (Nova Biomedical, Runcorn, UK). There was limited evidence for epoc® (Siemens Healthineers AG, Erlangen, Germany) and Piccolo Xpress® (Abaxis, Inc., Union City, CA, USA) devices and no studies of DRI-CHEM NX 500 (Fujifilm Corporation, Tokyo, Japan). The review of implementation and clinical outcomes included six studies showing practice variation in the management decisions when a point-of-care device indicated an abnormal estimated glomerular filtration rate. The review of cost-effectiveness evidence identified no relevant studies. The de novo decision model that was developed included a total of 14 strategies. Owing to limited data, the model included only i-STAT, ABL800 FLEX and StatSensor. In the base-case analysis, the cost-effective strategy appeared to be a three-step testing sequence involving initially screening all individuals for risk factors, point-of-care testing for those individuals with at least one risk factor, and including a final confirmatory laboratory test for individuals with a point-of-care-positive test result. Within this testing approach, the specific point-of-care device with the highest net benefit was i-STAT, although differences in net benefit with StatSensor were very small. LIMITATIONS: There was insufficient evidence for patients with estimated glomerular filtration rates < 30 ml/minute/1.73 m2, and on the full potential health impact of delayed or rescheduled computed tomography scans or the use of alternative imaging modalities. CONCLUSIONS: A three-step testing sequence combining a risk factor questionnaire with a point-of-care test and confirmatory laboratory testing appears to be a cost-effective use of NHS resources compared with current practice. The risk of contrast causing acute kidney injury to patients with an estimated glomerular filtration rate of < 30 ml/minute/1.73 m2 is uncertain. Cost-effectiveness of point-of-care testing appears largely driven by the potential of point-of-care tests to minimise delays within the current computed tomography pathway. FUTURE WORK: Studies evaluating the impact of risk-stratifying questionnaires on workflow outcomes in computed tomography patients without recent estimated glomerular filtration rate results are needed. STUDY REGISTRATION: This study is registered as PROSPERO CRD42018115818. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 39. See the NIHR Journals Library website for further project information.

Original publication

DOI

10.3310/hta24390

Type

Journal

Health Technol Assess

Publication Date

08/2020

Volume

24

Pages

1 - 248

Keywords

ACUTE KIDNEY INJURY, CREATININE, GLOMERULAR FILTRATION RATE, OUTPATIENTS, POINT-OF-CARE TESTING, TOMOGRAPHY X-RAY COMPUTED