Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Decisions regarding the continued need for control measures to contain the spread of SARS-CoV-2 rely on accurate and up-to-date information about the number of people and risk factors for testing positive. Existing surveillance systems are not based on population samples and are generally not longitudinal in design.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>From 26 April to 19 September2020, 514,794 samples from 123,497 individuals were collected from individuals aged 2 years and over from a representative sample of private households from England. Participants completed a questionnaire and nose and throat swab were taken. The percentage of individuals testing positive for SARS-CoV-2 RNA was estimated over time using dynamic multilevel regression and post-stratification, to account for potential residual non-representativeness. Potential changes in risk factors for testing positive over time were also evaluated using multilevel regression models.</jats:p></jats:sec><jats:sec><jats:title>Findings</jats:title><jats:p>Between 26 April and 19 September 2020, in total, results were available from 514,794 samples from 123,497 individuals, of which 489 were positive overall from 398 individuals. The percentage of people testing positive for SARS-CoV-2 changed substantially over time, with an initial decrease between end of April and June, followed by low levels during the summer, before marked increases end of August and September 2020. Having a patient-facing role and working outside your home were important risk factors for testing positive in the first period but not (yet) in the second period of increased positivity rates, and age (young adults) being an important driver of the second period of increased positivity rates. A substantial proportion of infections were in individuals not reporting symptoms (53%-70%, dependent on calendar time).</jats:p></jats:sec><jats:sec><jats:title>Interpretation</jats:title><jats:p>Important risk factors for testing positive varied substantially between the initial and second periods of higher positivity rates, and a substantial proportion of infections were in individuals not reporting symptoms, indicating that continued monitoring for SARS-CoV-2 in the community will be important for managing the epidemic moving forwards.</jats:p></jats:sec><jats:sec><jats:title>Funding</jats:title><jats:p>This study is funded by the Department of Health and Social Care. KBP, ASW, EP and JVR are supported by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford in partnership with Public Health England (PHE) (NIHR200915). AG is supported by U.S. National Institute of Health and Office of Naval Research. ASW is also supported by the NIHR Oxford Biomedical Research Centre and by core support from the Medical Research Council UK to the MRC Clinical Trials Unit [MC_UU_12023/22] and is an NIHR Senior Investigator. The views expressed are those of the authors and not necessarily those of the National Health Service, NIHR, Department of Health, or PHE.</jats:p></jats:sec><jats:sec><jats:title>Research in context</jats:title><jats:sec><jats:title>Evidence before this study</jats:title><jats:p>Unprecedented control measures, such as national lockdowns, have been widely implemented to contain the spread of SARS-CoV-2. Decisions regarding the continued need for social distancing measures in the overall population, specific subgroups and geographic areas heavily rely on accurate and up-to-date information about the number of people and risk factors for testing positive. We searched PubMed and medRxiv and bioRxiv preprint servers up to 6 June 2020 for epidemiological studies using the terms “SARS-CoV-2” and “prevalence” or “incidence” without data or language restrictions. Most studies were small or had only information about current presence of the virus for a small subset of patients, or used data not representative of the community, such as hospital admissions, deaths or self-reported symptoms. Large population-based studies, such as the current study, are required to understand risk factors and the dynamics of the epidemic.</jats:p></jats:sec><jats:sec><jats:title>Added value of this study</jats:title><jats:p>This is the first longitudinal community survey of SARS-CoV-2 infection at national and regional levels in the UK. With more than 500,000 swabs from more than 120,000 individuals this study provides robust evidence that the percentage of individuals from the general community in England testing positive for SARS-CoV-2 clearly declined between end of April and June 2020,, followed by consistently low levels during the summer, before marked increases end of August and September 2020. Risk factors for testing positive varied substantially between the initial and second periods of higher positivity rates, with having a patient-facing role and working outside your home being important risk factors in the first period but not (yet) in the second period, and age (young adults) being an important driver of the second period of increased positivity rates. Positive tests commonly occurred without symptoms being reported.</jats:p></jats:sec><jats:sec><jats:title>Implications of all the available evidence</jats:title><jats:p>The observed decline in the percentage of individuals testing positive adds to the increasing body of empirical evidence and theoretical models that suggest that the lockdown imposed on 23 March 2020 in England was associated, at least temporarily, with a decrease in infections. Important risk factors for testing positive varied substantially between the initial and second periods of higher positivity rates, and a substantial proportion of infections were in individuals not reporting symptoms, indicating that continued monitoring for SARS-CoV-2 in the community will be important for managing the epidemic moving forwards.</jats:p></jats:sec></jats:sec>

Original publication

DOI

10.1101/2020.10.26.20219428

Type

Publisher

Cold Spring Harbor Laboratory

Publication Date

27/10/2020