Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Long-term care facilities (LTCFs) are vulnerable to outbreaks of coronavirus disease 2019 (COVID-19). Timely epidemiological surveillance is essential for outbreak response, but is complicated by a high proportion of silent (non-symptomatic) infections and limited testing resources. METHODS: We used a stochastic, individual-based model to simulate transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) along detailed inter-individual contact networks describing patient-staff interactions in a real LTCF setting. We simulated distribution of nasopharyngeal swabs and reverse transcriptase polymerase chain reaction (RT-PCR) tests using clinical and demographic indications and evaluated the efficacy and resource-efficiency of a range of surveillance strategies, including group testing (sample pooling) and testing cascades, which couple (i) testing for multiple indications (symptoms, admission) with (ii) random daily testing. RESULTS: In the baseline scenario, randomly introducing a silent SARS-CoV-2 infection into a 170-bed LTCF led to large outbreaks, with a cumulative 86 (95% uncertainty interval 6-224) infections after 3 weeks of unmitigated transmission. Efficacy of symptom-based screening was limited by lags to symptom onset and silent asymptomatic and pre-symptomatic transmission. Across scenarios, testing upon admission detected just 34-66% of patients infected upon LTCF entry, and also missed potential introductions from staff. Random daily testing was more effective when targeting patients than staff, but was overall an inefficient use of limited resources. At high testing capacity (> 10 tests/100 beds/day), cascades were most effective, with a 19-36% probability of detecting outbreaks prior to any nosocomial transmission, and 26-46% prior to first onset of COVID-19 symptoms. Conversely, at low capacity (

Original publication

DOI

10.1186/s12916-020-01866-6

Type

Journal

BMC Med

Publication Date

08/12/2020

Volume

18

Keywords

COVID-19, Computational modelling, Contact network, Infectious disease surveillance, Long-term care, Mathematical modelling, Public health, SARS-CoV-2, Testing, Transmission dynamics, COVID-19, Coronavirus Infections, Female, Humans, Long-Term Care, Male, Mass Screening, Pneumonia, Viral, Practice Guidelines as Topic, Public Health Surveillance, SARS-CoV-2