Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hospital length of stay (LOS) is an important clinical and economic outcome and knowing its predictors could lead to better planning of resources needed during hospitalization. This analysis sought to identify structure, patient, and nutrition-related predictors of LOS available at the time of admission in the global nutritionDay dataset and to analyze variations by country for countries with n > 750. Data from 2006-2015 (n = 155,524) was utilized for descriptive and multivariable cause-specific Cox proportional hazards competing-risks analyses of total LOS from admission. Time to event analysis on 90,480 complete cases included: discharged (n = 65,509), transferred (n = 11,553), or in-hospital death (n = 3199). The median LOS was 6 days (25th and 75th percentile: 4-12). There is robust evidence that LOS is predicted by patient characteristics such as age, affected organs, and comorbidities in all three outcomes. Having lost weight in the last three months led to a longer time to discharge (Hazard Ratio (HR) 0.89; 99.9% Confidence Interval (CI) 0.85-0.93), shorter time to transfer (HR 1.40; 99.9% CI 1.24-1.57) or death (HR 2.34; 99.9% CI 1.86-2.94). The impact of having a dietician and screening patients at admission varied by country. Despite country variability in outcomes and LOS, the factors that predict LOS at admission are consistent globally.

Original publication

DOI

10.3390/nu13114111

Type

Journal

Nutrients

Publication Date

16/11/2021

Volume

13

Keywords

competing risks, dietician, discharge, hospital, length of stay, mortality, nutrition, nutrition screening, survey, transfer, Adolescent, Adult, Aged, Aged, 80 and over, Diagnostic Tests, Routine, Female, Hospital Mortality, Humans, Length of Stay, Male, Middle Aged, Nutrition Assessment, Nutritional Status, Patient Admission, Predictive Value of Tests, Proportional Hazards Models, Risk Assessment, Time Factors, Young Adult