Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A recent cost-effectiveness analysis of a residential radon remediation programme considered and highlighted many areas of uncertainty in the parameters chosen for the analysis. One assumption not challenged in the study was the benefits stream profile adopted. There are several different ways of loading the benefits in terms of life years into the cost-effectiveness model and several of these are explored and the results are reported in this study. The benefits profile depends upon the lead-time to cancer manifestation post environmental carcinogen (radon) exposure. The literature reviewed suggests that there are many options for loading benefits to radon-induced lung cancer prevention programmes. In this study, the alternative benefits stream profiles are explored and their implications for the cost-effectiveness ratio are examined. Adopting different benefits stream profiles to the model results in a range of cost-effectiveness ratios from 14912.90 pounds per life year gained to 52416.27 pounds per life year gained. The preferred model is reported where the life years gained are assumed to be equally distributed over the last 15 years of the 40-year time horizon of the analysis (Y25-40) and the corresponding cost-effectiveness ratio is 37,943 pounds per life year gained.



J Environ Radioact

Publication Date





19 - 28


Aged, Cost-Benefit Analysis, Environmental Monitoring, Female, Housing, Humans, Life Expectancy, Lung Neoplasms, Male, Middle Aged, Models, Theoretical, Neoplasms, Radiation-Induced, Public Health, Radon, Water Pollutants, Radioactive, Water Pollution